Speech Synthesis, LPCNet

- Use of Computers to synthesize intelligible speech
- DSP (Linear Prediction), Deep Learning (WaveRNN) \(\Rightarrow\) LPCNet

Features: Bark Cepstrum

Frame Rate Network, Sample Rate Network
- Signal \((s,t)\), Excitation \((e,t)\), Prediction \((p,t)\)
- Output: Excitation \((e,t)\)

Minimize cross-entropy loss

Why move ahead?

Explicit need of LPCs
- Need clean acoustic features which might not always be available

Why not “Learn” the LPCs?!
- Learn LPCs directly from the input features
 - Possible better fit
- Not restricted to clean speech features
 - Arbitrary codec features (or more general neural features)
- Opens up LPCNet to end-to-end tasks like TTS or speech coding

End-to-end LPCNet

1. **Learning the LPCs**
 - Using subset of FRN features to avoid overhead
 - Learn Reflection Coefficients instead of LPC for stability
 - Levinson recursion to convert RC \(\Rightarrow\) LPC

2. **Differentiable Embedding Lookup**
 - \(\mu\)-law quantized inputs prevent gradient backpropagation
 - Linearly interpolate between adjacent embeddings

 \[
 v^{(i)}(x) = (1 - f) \cdot v_{[x]} + f \cdot v_{[x]+1}
 \]

 \[
 f = x - [x]
 \]

3. **Modified Loss Function**
 - LPCNet uses precomputed excitations,
 - Have to compute real-valued excitations on the fly
 - Interpolate excitation probabilities linearly (to propagate gradients)
 - Naïve cross entropy minimization \(\Rightarrow\) network cheats by forcing excitation to be large (\(\mu\)-law spacing wider for larger excitation)
 - To overcome this, compute cross-entropy in linear domain

 \[
 L = -\left(p_{t} \log p_{t} + (1 - p_{t}) \log (1 - p_{t})\right) + \alpha \log \left(\frac{256}{128}\right) \left(p_{t} - s_{t}\right)
 \]

Need for Regularization

- Prevent divergence + improve performance
 - \(L_{1}\): Increase the weight on the second term in the loss
 - Log-Area Ratio (LAR): Match network predicted LPCs to ground truth
 - Network predicts Reflection Coefficients (RCs)
 - Transform to Log-Area ratio (LAR) and match with ground truth LAR
 - Log-Area Ratio matching with naïve cross-entropy minimization (LAR/CE)
 - Minimize \(\mu\)-law cross-entropy to prevent divergence

Final Model

- End-to-end LPCNet that can learn the LPCs!
 - Not restricted to inputs from which we have to obtain the LPCs
 - Improved Loss + Regularization for better performance
 - Use LPCNet for broader range of applications
 - Speech Enhancement, TTS etc.

References